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Contribution
Jiang and Tanner (2008) consider a method of
classification using the Gibbs posterior which is
directedly constructed from the empirical clas-
sification errors. In this paper, we address the
computational aspect of the Gibbs posterior.
We note some drawbacks of the original algo-
rithm based on the Gibbs sampler with aug-
mented latent variables, and propose an al-
ternative method based on the Metropolis al-
gorithm. Numerical performance of the algo-
rithms are examined and compared via simu-
lated data. We find that the Metropolis algo-
rithm produces good classification results at an
improved speed of computation.

Gibbs Posterior
Problem: Predict y ∈ {0, 1} based on x ∈ RK

with iid data Dn = (y(i), x(i))n1 , K >> n.
Classification rule: I[xTβ > 0]
Risk: R(β) = P ∗{y 6= I(xTβ > 0)}

Standard Bayesian method, e.g. Lee et. al.
(2003): generating β ∈ Ω from

e−n{−
1
n l(D

n|β)}π(dβ)/

∫
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where π is a prior, and l(Dn|β) is the log
likelihood function based on, e.g., probit linear
regression.

Gibbs posterior: generating β ∈ Ω from

π(dβ|Dn) = e−nψRn(β)π(dβ)/

∫
Ω

e−nψRn(β)π(dβ)

where ψ > 0 is the inverse temperature, andRn
is a sample analog of the misclassification risk
R, e.g.
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where Ai = I[(x(i))Tβ > 0].

Sec7 Algorithm (Old)
Smoothed risk: Replace Ai by Φi =
Φ(σ−1(x(i))Tβ).
Prior: Normal binary prior on (γ, β1, β̃γ) where
γj = I[βj 6= 0], β1 ∈ {−1,+1} and β̃γ =
(βj)j>1,γj=1.

• β1|γ = ±1 with p = 0.5, β̃γ |γ ∼ N(0, Vγ);

• γ1 = 1, γ2 = 1 (Intercept), and (γj)
K
j=3 are

iid Bernolli(λ) with size restriction r̄.

Posterior Structure: Can be viewed as likeli-
hood for a mixture of two binary models.
=⇒ Gibbs sampler with latent variables.

Drawbacks:

• σ large ⇒ Rn not close to empirical risk
⇒ Bad classification performance;

• σ small⇒ Very slow convergence.

Metropolis Algorithm (New)
• Works for unsmoothed empirical risk.

• Classical "between" steps to propose dele-
tion, addition or swapping of variables.
Incorporate "within" step for updating
parameters that can’t be integrated away.

BETWEEN steps I and II: Update β to β′ with
model indexes changing.
I: (add/delete): Randomly choose an index j ∈
{3, ..., ,K}.
I(i) (γj = 1,delete) Propose γ′j = 0 with accep-

tance prob. = min
{

1,
π(β′|Dn)q(βj)
π(β|Dn)

}
.

I(ii) (γj = 0,add) Propose γ′j = 1 with accep-

tance prob. = min
{

1, π(β′|Dn)
π(β|Dn)q(β′j)

}
.

II: (swap): Randomly choose a γ′k = 0 and γ′l =
1. Propose γ′k = 1 and γ′l = 0, with acceptance

prob. = min
{

1, π(β′|Dn)q(βl)
π(β|Dn)q(β′k)

}
.

WITHIN step III: Update β′ to β∗ with model
indexes fixed and with the nonzero values of
β′’s changed.
III: (within): Propose a move from β′1 to β∗1 ∼
Bin(1, 0.5), as well as a move from β̃′γ to β̃∗γ ∼
N(β̃′γ , σ

2
qI(

∑K
j=2 γj)×(

∑K
j=2 γj)), with acceptance

prob = min
{

1, π(β∗|Dn)
π(β′|Dn)

}
.
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Results
We used Octave on a linux machine (Pentium
4HT, 3.2 GHz, 512 MB RAM). It took per unit
time about 7 min (for 2000 iterations) for the
Sec7 methods, and about 5 min for the Lee.et.al.

method. The Metropolis method takes about 2
min when steps I,II, III are cycled in the itera-
tions. (The time will decrease when I or II is ran-
domly chosen in each iteration.)

• Under the "fivedot" model, the Lee.et.al.
algorithm performs the worst, while all
other algorithms have smaller testing er-
rors. The performance is different be-
cause Lee.et.al. method is likelihood-based
which requires the correct model specifica-
tion. Here, however, the linear classifica-
tion rules are misspecified that it will not
generate the best possible Bayes rule.

• Under the "mvn" model, the Lee.et.al. al-
gorithm performs well, since its probabil-
ity model is very close to the true model
of logistic regression. The performance of
the Gibbs posterior using Metropolis algo-
rithm is still comparable, which directly
uses the empirical classification error to
construct the posterior.

• We conclude that the Metropolis method is
generally preferable to the Sec7 methods,
and produces good classification results
much faster than all other methods. It can
also work much better than the Lee.et.al.
method when there is model misspecifi-
cation and is still competitive when the
model is correctly specified.

Simulation
3 methods for comparison:

• Sec7 algorithm for σ = 0.2 (Sec7.2) and
σ = 0.02 (Sec7.02);

• Metropolis algorithm;

• Lee.et.al. algorithm.

2 models for data generating with ntrain = 30,
ntest = 200, K = 50, and x2 = 1 (Intercept):

• "mvn" model: generated from multivari-
ate normal distribution with 2 informa-
tive predictors (x1;x3).
←→ a "correctly" specified model;

• "fivedot" model: the design points of the
2 informative predictors (x1;x3) form a
set of five points.
←→ a "misspecified" model.

2 measures for performance:

• Misclassification rate: Calculate mean er-
ror over 500 iterations after 1500 burn-in,
then average over nrep = 50 simulated
datasets.

• Computation time.
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